MANAGING SOFTWARE PROJECTS WITH EARNED VALUE
By Paul J. Solomon

Northrop Grumman Corporation

Information Technology projects have been a disaster area for federal, state, and local governments. Taxpayers have been victimized by projects which have been too costly, too late, don’t work right or have been aborted as mercy killings. The spectrum of violators includes the IRS, air traffic control, defense and motor vehicle registration. The private sector too has similar failures but the stockholders and public are usually shielded from these embarrassments.

Some common causes are poorly defined requirements, underestimation of total costs and funding needs, over reliance on unproved technologies and failure to identify and manage risks early in the program. The solutions to most of these deficiencies are beyond the scope of this paper. However, some suggestions about using earned value to manage software development projects will be offered with hope that better project planning and control will result.

The proper use of earned value provides for integration of project scope, schedule, and cost objectives and the establishment of a baseline plan for performance measurement. Success of the project can be aided by defining the best objectives, by planning resources and costs which are directly related to those objectives, by measuring accomplishments objectively against the plan, by identifying performance trends and problems as early as possible and by taking timely corrective actions.

Examples of how earned value was implemented through various phases of software projects will be used to illustrate some software management best practices and lessons learned. The typical software development phases in a plan will be described. Emphasis will be placed on establishing a performance measurement baseline which references the technical objectives in a consistent manner through all phases, on defining the best metrics for sizing the project and for measuring progress towards meeting the technical, schedule and cost objectives, and on selecting the most appropriate earned value techniques.

Since most software projects get into trouble, some likely areas of risk will be highlighted. Then, several examples will illustrate how the right earned value metrics can be used to effectively manage problems and the wrong metrics will only mask the impact of problems. Related topics include:

- Planning for incremental releases and deferred functionality

- Replanning for incremental software releases not in the baseline

- Software requirements volatility

- Relating earned value to the correction of defects during rework

- Testable requirements as an overarching progress indicator

- Leading indicators of potential schedule slip and cost growth

Management Objectives

Earned Value Management begins with defining the project’s management objectives. There are technical, schedule and cost objectives. Planning starts with a determination of the project’s scope and precise definition of the technical requirements. Top level technical requirements may include system operational requirements or functionality, system interfaces, architecture, language and design methods.

Planning Phases
The planning phases for this software project example includes the following phases for each major release or version: Requirements, Design, Coding (including Unit Test) and Integration Test. The statement of work (SOW) of each successive release contains incremental requirements or functionality. There are multiple builds within each software release.

Planning for Rework

Following the initial development of releases, versions or builds, the SOW for each subsequent build should also include an estimate for rework of defects which were created in previous phases and builds but are planned to be corrected in the current build. Rework is commonly underestimated in project planning although it commonly accounts for 20 to 50% of total development costs. To ensure adequate budget and period of performance, the planning assumptions should include a targeted rate of defects to be discovered in each phase and a plan to correct these defects within the rework SOW of each phase and build. Failure to establish baselines plan for rework and for requirements, as described below, and to accurately measure progress towards these objectives have caused many software projects to get out of control.

Some lessons learned will be discussed later.

Requirements Metrics
During the requirements phase, top level requirements are defined and then successively analyzed and broken down to the levels needed to govern the design, code, and test phases. The establishment of a requirements baseline against which progress can be consistently measured is the most important step in Earned Value Management. It drives the sizing of the project, the resource forecast (budget) and the schedule. The technical requirements also establish the technical criteria for completing tasks. The output of the requirements phase defines the criteria or attributes for completing significant milestones or taking earned value in all subsequent levels and stages of development. Furthermore, it will be shown that a quantified requirements baseline can provide the most accurate metrics for determining earned value for rework during the test phases.

During the development of top level requirements, the discrete value milestones technique is recommended for earned value. After the top-level requirements are decomposed and the number of lowest level requirements is known, the appropriate techniques are either discrete value milestones or percent completion based on the number of requirements. The latter technique is shown in the example.

Design Metrics
In the design phase, a unit of measurement should be selected based on the design standards and practices employed for each build or block of code. This may be modules, packages, pages or another appropriate component. Alternately, the number of requirements, at the lowest level or at an intermediate level may be the unit of measure. Because internal controls should be in place to ensure that all requirements are incorporated into the design, it is recommended that the earned value also track to the requirements.

Coding Metrics
The scope of the coding phase for discussion purposes is the initial coding, not the rework of coding to eliminate defects found in testing. The most common metric for the coding phase is lines of code (LOC). It is normally the best sizing measure and the basis of establishing budgets. Consequently, it is commonly the basis for earned value using a percent of completion method. Unfortunately, there is a high risk of significant error in estimating LOC, especially if the project is larger, more complex, or more technically novel than previously completed projects. When, during the course of coding development, it becomes apparent that the total LOC will be significantly different than the original estimate, it is appropriate to change the units basis and to adjust cumulative earned value.

When LOC is not appropriate, an objective metric appropriate to the work or discrete value milestones with sufficient frequency for early detection of problems may also be used for earned value. A good example is the number of computer system units or modules, at the lowest level, which can be compiled, linked, loaded and tested.

However, to measure progress against a baseline that normally does not change, it is recommended that the number of requirements, at the lowest detail level, is the best basis for earned value. Although some requirements may generate much more code than others, the number of detail requirements is normally large enough to be a valid basis for determining percent of completion, even at a building block level. Using requirements as the unit of measure, rather than LOC, avoids the need to make retroactive adjustments to earned value.

Integration Test Metrics

During integration tests, acceptance test plans or procedures are executed to determine if the software system meets the requirements. The effort includes the execution of tests as well as the rework of code. Several types of metrics have been used during this phase with poor success in measuring progress. These metrics and their shortcomings are discussed below.

The number of tests that executed to completion, regardless of whether the test was successful, is a favorite metric of the test manager. The test manager normally is responsible for a maintaining a computer laboratory and the related resources needed to run tests. The test plan has a discrete number of tests, including the initial tests and an estimate of the number of retests of reworked code. This manager’s expectation is to be credited for earned value if the laboratory equipment and human resources functioned sufficiently to execute the tests. After all, it’s the coding manager’s fault if the software failed to perform its required functions. Historically, when defects in the quality of the software caused more tests to be performed then were plan, earned value was fully credited when the planned number of tests were executed. The manager would then propose that the additional time and tests be considered scope growth which deserved more budget, or at least an excusable overrun. This metric is no measure of progress towards attaining functional code.

For the coders, an often-used earned value metric is the expected number of defects to be analyzed and corrected during rework. Normally, the coding manager is facing a burndown curve of defects and tends to focus on eliminating defects rather than attaining requirements. Using defects as the primary metric is flawed for several reasons. First, the actual number of defects discovered during testing is always different than planned. Second, the successful correction of one defect often results in detection of new ones. Again, until all defects have been corrected, this metric does not measure progress towards attaining functional code.

It is recommended that the most consistent earned value metrics during Integration Test are sets of related requirements and that earned value be the percentage of requirements tested successfully multiplied by the total budget for that set of requirements. A later example will illustrate how this metric can prevail even if there are unplanned software releases and significant requirements volatility.

Testable Requirements
At this point, the definition of requirements will be expanded and clarified, especially as it relates to earned value. The concept of testable requirements as an alternative software sizing measure to LOC and function points was proposed by Dr. Peter Wilson of Mosaic Inc.
 Most requirements methodologies specify functionality in a top-down manner. Requirements are successively decomposed until the requirement can be precisely defined and is unambiguous. These criteria will be met only if they passed an acceptance test to validate whether the requirement had or had not been implemented correctly.

There are may ways to test functionality. These include testing of the actual product being developed in its real environment, laboratory simulation, correlation analysis, and peer inspections. Tracking success towards attaining all the requirements at the lowest level may be necessary for quality control purposes but that will probably result in more granularity than is needed for measuring earned value. Consequently, careful analysis is recommended to determine both the level of testable requirements needed for effective earned value management and selection of those, high priority requirements which are most critical or significant to the completion of the project. By selecting a critical subset of the total requirements, the cost and timeliness of measuring progress and determining earned value can be reduced.

Deferred Functionality and Rework
As discussed earlier, rework is normally planned and budgeted in terms of an expected number of defects to be corrected in a software build or release. The number of defects is an important cost driver to determine the required level of resources. At this point, it is recommended that the project manager also develop time-phased targets of the percent of functionality or testable requirements that should be successfully attained with each software milestone. Furthermore, these functionality targets should be documented as part of the criteria for completing that milestone and taking full earned value.

A lesson learned from observing many software projects which have overrun both cost and schedule is that both schedule progress and earned value did not display accurate progress towards meeting the requirements. Usually, software is released to the next higher level of testing although it contains defects that had been detected but not corrected. It has been normal practice to display a completed milestone on the schedule and to take all of the earned value which was budgeted for that milestone, without regard to the percent of functionality which had been planned for that milestone. If the project were actually behind schedule with regard to functionality, this condition was not apparent by inspecting the schedules unless and until the manager declared a slip to a subsequent milestone that would be impacted. Likewise, the earned value showed no schedule variances and cost variances were understated. As a result, the Earned Value Management System (EVMS) failed to provide early warning of significant problems. Finally, the Estimate to Complete (ETC) became inaccurate unless and until the manager analyzed the remaining work and revised the ETC.

On several projects observed, the master plan and performance measurement baseline were predicated on a discrete number of software releases but completion of the project required many additional releases with attendant increased costs and schedule. However, because the entire budget was consumed as earned value for the baselined releases, there was no remaining budget for the unplanned effort. If Management Reserve were not available to fund the additional releases, there was no way to use earned value to manage the remaining effort and progress towards completion was not measurable by the EVMS. Although taking negative earned value based on an analysis of true progress would be an acceptable technique to show accurate status and to provide budget for the remaining effort, most managers balked at this solution. Their rationale was that the earned value was taken as planned, based on the release of software, that the criteria for software release did not include specified functionality, or if it did specify functionality, the deferred functionality was waived by all stakeholders.

Testable Requirements: an Overarching Earned Value Metric
To preclude the overstatement of progress and the premature consumption of budget, it is recommended that testable requirements be the primary basis for measuring earned value during the testing and rework phases of software development. This basis is suitable whether interim milestones are established based on percent complete or a pure percent complete earned value technique is used.

To illustrate how this concept could be implemented at the work package level, assume that a work package for rework has release of a software build as its completion milestone with a budget of 500 hours. Also, the build includes 100 testable requirements with a targeted functionality of 80 percent. In other words, it is planned that 80 requirements will be tested successfully and 20 requirements will not be tested successfully and will be deferred to the next build.

If the build is released with 72 requirements tested successfully (90 percent of 80 requirements), then earned value would be 450 hours (90 percent of budget). The event of releasing the software short of its targeted functionality is cause to close the work package and replan the remaining work. In this case, transfer the rework to attain the remaining functionality and the residual budget of 50 hours to the work package for the next planned build. Place the budget in the first month of the receiving work package to preserve the schedule variance. If no planned builds remain, establish them through the normal internal replan process. Continue this process until all requirements have been successfully tested or curtailed.

Software Requirements Volatility

Changes in software requirements are most numerous during requirements analysis and preliminary design. The requirements are usually established as a baseline at the conclusion of a Critical Design Review. However, tracking of requirements volatility, after the requirements are baselined, is important, as subsequent changes may cause cost increases and schedule delays.

Tracking requirements volatility also provides the basis for resetting the overarching metric, total testable requirements. When testable requirements change by a significant amount, it is time to revise the basis for determining percent complete and to adjust earned value.

Conclusion

Using earned value to plan and manage software projects can prevent expensive failures. Earned value should be based on requirements and achievement of functionality throughout the software development life cycle, rather than on discrete metrics for each phase which may not accurately reflect the overall progress of the project.

Paul J. Solomon

Northrop Grumman Corporation
Paul is the Director, Earned Value Management Systems (EVMS) on the B-2 Stealth Bomber program for Northrop Grumman Corporation’s Air Combat Systems, a business area of the company’s Integrated Systems Sector. His responsibilities include monitoring and improving program management processes and controls.

He is a driving force to improve integrated program management processes including systems engineering and risk management. He is on the board of the National Defense Industrial Association, Program Management Systems Subcommittee which authored ANSI/EIA-748, the Industry Standard Guidelines for EVMS. As a member of the Integrated Program Management Initiative Joint (Industry/Government) Team, he received the DoD’s highest acquisition reform award, the 1998 David Packard Excellence in Acquisition Award.

Paul is a frequent speaker at program management and software conferences and has appeared in a series of satellite broadcasts and videotapes by the Software Program Managers Network on using earned value to manage software projects.

He has held controller positions in aerospace and commercial corporations, was vice president of a computer services company and a finance officer in the U.S. Army. Paul's academic credentials include a BA degree from Dartmouth College and an MBA from the Amos Tuck School at Dartmouth. He is also a Certified Computer Professional (CCP).

Tel: 661-540-0618 FAX: 272-266-5648 Email: solompa@mail.northgrum.com

� P.B. Wilson, “Testable Requirements-An Alternate Sizing Measure,” The Journal of the Quality Assurance Institute(October 1995):1

PAGE
1

